

DATA SHEET: LFB CW510L

Alloy with low lead content and optimised machinability.

Alloy with lead content less than 0.2% uses in the US market for which it is NSF372 certified. Good machinability due to chip removal makes LFB the standard alloy among materials with reduced lead content. Inserted in the 4MS "Positive List" it is used in the parts used in contact with drinking water.

NAME OF ALLOY

Certified to NSF/ANSI 372

UNI EN: CW510L - CuZn42 **ASTM:** C28500

CHEMICAL COMPOSITION UNI EN 12164:2024							
Cu	Pb	Sn	Fe	Ni*	Al	Zn	Other elements
min. 57.0 max. 59.0 %	≤0.2 %	≤0.3 %	≤0.3 %	≤0.2 %	≤0.05 %	difference	≤0.2 %

^{*}Limitation according 4MS. Elements not listed must be ≤0.02 %. Group of restriction of the surface in contact with drinking water: B,D.

HEAT TREATMENTS

STRESS RELIEVING

Enables the redistribution of tensions induced by mechanical processing of cold plastic deformation, reducing the risk of stress corrosion cracking. The treatment consists of heating the items to 200°C - 250°C for 2 hours and cooling within the furnace. The validation of the stress relieving treatment can be performed with the ISO 6957 test.

ANNEALING

Re-crystallizes the alloy, reducing its hardness and increasing its ductility.

The temperature of the treatment varies from 450°C to 550°C for an amount of time relative to the required results. The high temperature can induce changes in the surface appearance and in the tolerance of the finished part.

MECHANICAL PROPERTIES UNI EN 12164:2024								
Condition	Diameter in mm		Hardness HBW*		Rm	Rp _{0.2} N/mm ²		Elongation %
of material	from	to (included)	min.	max.	min.	min.	max.	min.
М	All			As a product			t	
R360	6 (5)	80 (60)	-	-	360	-	320	20
H090	6 (5)	80 (60)	90	125	-	-	-	-
R430	2	40 (35)	-	-	430	220	-	10
H110	2	40 (35)	110	160	-	-	-	-
R500	2	14 (10)	-	-	500	350	-	5
H135	2	14 (10)	135	-	-	-	-	-

^{*}the hardness value is determined in the mid-range

The values in brackets refer to the hexagonal section bar. The standard condition produced by Almag is R500 for $\emptyset \le 39$ or H135 for hardness and R430 from $\emptyset > 39$ for Rm, or H110 for hardness. Any other conditions must be requested when ordering - subject to feasibility request.

LFB CW510L

TECHNOLOGICAL PROPER	low 🗔	excellent			
Structure	α+β	Machinability			
Density	8.4 kg/cm ²	Weldability			
Electrical conductivity	27% IACS	Hot forming			
Coeff. of thermal expansion	21.2 10 ⁻⁶ /K	Cold forming			
Thermal conductivity*	112 W/(m K)	Corrosion resistance**	Not resistant		
Specific heat	381 J/(kg K)				
Elasticity module	85 kN/mm ²	*at room temperature **use care to ascertain compatibility wi	th chemical substances		
Melting point	870-890 °C				

DIMENSIC	DIMENSIONS, TOLERANCES, AND STRAIGHTNESS UNI EN 12164:2024							
	RO	UND section	HEXA	GONAL and SC	UARE			
Nominal di	ameter (mm)		TOLERANCES			Nominal key (mm)		
from	to included	Class A	Class B	Class C	from	to included	mm	
6	10	0 - 0.06	0 - 0.036	0 - 0.025	6	10	0 - 0.09	
10	18	0 - 0.07	0 - 0.043		10	18	0 - 0.11	
18	30	0 - 0.08	0 - 0.052		18	30	0 - 0.13	
30	50	0 - 0.16			30	50	0 - 0.16	
50	80	0 - 0.19			50	60	0 - 0.19	

The standard tolerance for the round bar is Class A. Any different tolerances must be agreed upon when ordering Semi-finished products can be supplied from Ø63 to Ø80 mm with Class A tolerances

Diam (m		Length of bar (mm)	Tolerance (mm)	
2	30	3000 o 4000	+/- 50	
30	50	3000 o 4000	+/- 100	
50	80	3000	+/- 100	

Diameter or Key (mm)		Deviation from straightness in mm			
		Every 400 mm	Every m of length L ≥ 1		
Round section bar					
10	50	0.4	1.0 x L		
Hexagonal and square section bar					
10	50	0.6	1.5 x L		

BAR FINIS	BAR FINISHING AND PACKAGING						
	er or Key m)		mfer n L mm	= '	ip n L mm	30°	
5	10	0.2	1.5	2	7		
10	20	0.2	2	3	10		
20	30	0.2	3	4	12	L	

Unless otherwise specified by the buyer, the shape of the ends of products larger than 30 mm is up to the supplier

Ends of round bars	finishing with chamfer and tip up to and including Ø40 mm finishing with chamfer and cut greater than Ø40 mm
Ends of hexagonal bars	finishing with chamfer and cut
Bar surface	pickled
Packaging	1000 kg bundle – 3/5 metal straps different bundle packagings and quantities are possible upon request
Identification	adhesive label on bundle strap
Stress relieving	the polygonal bar was subjected to stress relieving treatment

