

DATA SHEET: 607 CW607N

607 CW607N

Mediumcopper alloy with reduced lead.

Alloy with medium copper and lead content. Presents excellent hot and cold deformability. The lead, albeit small, ensures a sufficient workability on the tool.

NAME OF ALLOY

UNI EN: CW607N - CuZn38Pb1 ASTM: C37000-C37100 **DIN**: 2.0372 BS: CZ123-CZ137

CHEMICAL COMPOSITION UNI EN 12164 ED.2016							
Cu	Pb	Sn	Fe	Ni	Al	Zn	Other elements
min. 60.0 max. 61.0 %	0.8 1.6 %	≤0.2 %	≤0.2 %	≤0.3 %	≤0.05 %	difference	≤0.2 %

HEAT TREATMENTS

STRESS RELIEVING

Enables the redistribution of tensions induced by mechanical processing of cold plastic deformation, reducing the risk of stress corrosion cracking. The treatment consists of heating the items to 200°C - 250°C for 2 hours and cooling within the furnace. The validation of the stress relieving treatment can be performed with the ISO 6957 test.

ANNEALING

Re-crystallizes the alloy, reducing its hardness and increasing its ductility.

The temperature of the treatment varies from 450°C to 550°C for an amount of time relative to the required results. The high temperature can induce changes in the surface appearance and in the tolerance of the finished part.

MECHANICAL PROPERTIES UNI EN 12164 ED.2016									
Condition	Diame	eter in mm	Hardness HB*		Rm	Rp _{0.2} N/mm ²		Elongation %	
of material	from	to (included)	min.	max.	min.	min.	max.	min.	
M	All		A			s a product			
R360	6(5)	80 (60)	-	-	360	-	300	20	
H070	6(5)	80 (60)	70	100	-	-	-	-	
R410	2	40 (35)	-	-	410	230	-	12	
H100	2	40 (35)	100	145	-	-	-	-	
R500	2	14 (10)	-	-	500	350	-	8	
H120	2	14 (10)	120	-	-	-	-	-	

^{*}the hardness value is determined in the mid-range

The values in brackets refer to the hexagonal section bar.
The standard condition produced by Almag is R410 for Rm.
Any other conditions must be requested when ordering - subject to feasibility request.

607 CW607N

Medium-copper alloy with reduced lead.

TECHNOLOGICAL PROPER	RTIES	low 🗔	excellent		
Structure	α+β	Machinability			
Density	8.40 g/cm ²	Weldability			
Electrical conductivity	24% IACS	Hot forming			
Coeff. of thermal expansion	20.4 10 ⁻⁶ K	Cold forming			
Thermal conductivity*	110 W/(mK)	Corrosion resistance**	Not resistant		
Specific heat	376 J/(kg K)				
Elasticity module	103 N/mm ²	*at room temperature **use care to ascertain compatibility w	th chemical substances		
Melting point	895-910 °C				

DIMENSIC	DIMENSIONS, TOLERANCES, AND STRAIGHTNESS UNI EN 12164 ED.2016								
	RO	UND section	HEXAGONAL and SQUARE						
Nominal Dia	ameter (mm)	TOLERANCES			Nominal	Tolerance			
from	to included	Class A	Class B	Class C	from	to included	mm		
6	10	0 - 0.06	0 - 0.036	0 - 0.025	6	10	0 - 0.09		
10	18	0 - 0.07	0 - 0.043		10	18	0 - 0.11		
18	30	0 - 0.08	0 - 0.052		18	30	0 - 0.13		
30	50	0 - 0.16			30	50	0 - 0.16		
50	80	0 - 0.19			50	60	0 - 0.19		

The standard tolerance for the round bar is Class A. Any different tolerances must be agreed upon when ordering Semi-finished products can be supplied from $\emptyset 63$ to $\emptyset 80$ mm with Class A tolerances

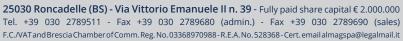
Diam (m	neter m)	Length of bar (mm)	Tolerance (mm)	
2	30	3000 o 4000	+/- 50	
30	50	3000 o 4000	+/- 100	
50	80	3000	+/- 100	

Diameter or Key (mm)		Deviation from Every 400 mm	m straightness in mm Every m of length L ≥ 1			
Round section bar						
10	50	0.4	1.0 x L			
Hexagonal and square section bar						
10	50	0.6	1.5 x L			

BAR FINISHING AND PACKAGING								
Diamete (m	er or Key m)	Chai Length	mfer L mm		ip n L mm			
5	10	0.2	1.5	2	7			
10	20	0.2	2	3	10			
20	30	0.2	3	4	12			

Unless otherwise specified by the buyer, the shape of the ends of products larger than 30 mm is up to the supplier

Ends of round bars	finishing with chamfer and tip up to and including Ø40 mm finishing with chamfer and cut greater than Ø40 mm
Ends of hexagonal bars	finishing with chamfer and cut
Bar surface	pickled
Packaging	1000 kg bundle – 3/5 metal straps different bundle packagings and quantities are possible upon request
Identification	adhesive label on bundle strap
Stress relieving	the polygonal bar was subjected to stress relieving treatment



COMPANY WITH MANAGEMENT SYSTEM CERTIFIED BY DNV GL

= ISO 9001 = = ISO 14001 = = OHSAS 18001 =

